29th Annual International Conference on Computer Sc

On the Distribution of Test
Smells in Open Source
Android Applications: An
Exploratory Study

Anthony Peruma, Khalid AlImalki, Christian D. Newman,
Mohamed Wiem Mkaouer, Ali Ouni, Fabio Palomba

\ester Institute
nGIUgy' — f-ﬁ - fii

‘ Roch

1

Introduction

‘ Software maintenance is not cheap!

A high-quality system need not be necessarily

Systems built using
can meet functional requirements

In the long run, such events impact software
maintenance - and !

Maintenance consumes of resources

‘ Towards maintenance-friendly code

Researchers and industry have defined and created
to detect code in need of

refactoring
Design/code smells - Cohesion, Coupling, God Class, etc.

Tools - FindBugs, PMD, Checkstyle, etc.

Smells make code and make it more

Research and tools have been primarily on

‘ Test Smells

, like production code, is subject to smells

Formally introduced in 2001 with

Inclusion of through the years, analysis
of their ,and patterns

to detect specific smell types

Studies on applications

apps
available on Google Play
as of Q4

A §

Objective

Insight into the unit testing practices of
Android app developers with the aim of
providing developers a mechanism to
improve unit testing code

Introduction

‘ Contribution

% Expansion of Test Smell Types

{@} Open-Source Test Smell Detection Tool

Understanding of Test Smells in Android apps

Replication Package Availability

Research Questions

How likely are Android apps to contain unit test smells?
Are apps, that contain a test suite, prone to test smells?
What is the frequency and distribution of test smells in apps?
How does the distribution of smell types in Android apps compare against traditional

Java applications?

What is the general trend of test smells in Android apps over time?
When are test smells first introduced into the project?

How do test smells exhibited by the apps evolve over time?

2.
Test Smells

‘ Proposed Test Smells

Conditional Test Logic
Constructor Initialization
Default Test

Duplicate Assert

Empty Test

Exception Handling

Ignored Test

Magic Number Test
Redundant Print
Redundant Assertion
Sleepy Test

Unknown Test

h Practicability

Are our proposed smells indicative of problems?

N, A
e T

k |
JAVA

smelly unit software software response
test files systems developers rate

Conditional Test Logic

Conditions within the test
method will

and its
expected output

Developers agree on the
negative impact on

However, outright removal
may not always be
applicable — decide on a

* Test method contains multiple control statements **

*
@Test
publiec veid testSpinner () {

** Control statement #1 =** */
@ (Map.Entry<String, String> entry : sourcesMap.entrySet()) {

String id = entry.getKey();

Object resultObject = resultsMap.get(id);
** Control statement #2 % =/
@(resultﬂbject instanceof EventsModel) {
EventsModel result = (EventsModel) resultObject;
Control statement #3 /
@(result.tes:Spinner‘runTest) {
System.out.println("Testing " + id + " (testSpinner)");
AnswerObject answer = new AnswerObject (entry.getValue(), "",
new CookieManager (), "");
EventsScraper scraper = new EventsScraper (RuntimeEnvironment.
application, answer);
SpinnerAdapter spinnerAdapter = scraper.spinnerAdapter();
assertEquals (spinnerAdapter.getCount (), result.testSpinner.data
.size());
* Control statemen #4 **x x/

forblidat 4 _=_0-_4 crdipnorlidantor cotConpt (). a4 S

assertEquals(spinnerAdapter.getItem(i), result.testSpinner.
data.get (i));

| actually have no idea why that for loop is there.
It doesnt do anything but run the test 1000
times, and there’s no point in that. I'll remove it.

Constructor Initialization

Initialization of fields should
be in the setUp() method
(i.e., test fixtures)

Most developers are aware
of test fixtures

Developers unanimously
agree on using test fixtures

Reasons for not using test
fixtures include “laziness”
and being “sloppy”

public class TagEncodingTest extends BrambleTestCase {
private final CryptoComponent crypto;
private final SecretKey tagKey;
/ X Constructor initializing field variable *xx x/

x x onst C 1

publjs gEncodingTest () {
@ = new CryptoComponentImpl (new TestSecureRandomProvider());
tdgRey

= TestUtils.getSecretKey();

@Test
public void testKeyAffectsTag() throws Exception {
for (int i = @; 1 < 100; i++) {

/) Field variable utilized test ethod
encodeTag(tag, tagKey, PROTOCOL_VERSION, streamNumber);
asseErtTrue(set.add(new Bytes(tag)));

| have already made this change since you
pointed it out so the code is clearer now

Default Test

DefaU|t 'teS't CIaSS meant 'to 6b11i: class ExampleUnitTest { \
Serve aS an il ** Default test method created by Android Studio #**

. public void addition_isCorrect() throws Exception {
ShOU|d elther be assertEquals (4, 2 + 2);

_ !)
A WI|| - ** Actual test method **
force developers to remove
P s 2

public void shareProblem() throws InterruptedException

thefile | "0

Observable. just (200)

.subscribeOn(Schedulers.newThread())

Unanimous agreement .subscribe (begin.asAction());

begin.set (200);
Thread.sleep (1000);

among developers that the assertEquals (beginTime.get (), "200");
flle m \ | e)

"and thatitmay [
lead to confusion

Removed useless example unit test

Duplicate Assert

The is
within

the same test method

The

method should be an

- some
developers preferred to split
the assertion statement into
separate methods

@Test
public void testXmlSanitizer() {

valid = XmlSanitizer.isValid("Fritz-box");
/* %% Assert statements are the same *x */
bssertEquals(”Minus is valid", true, valid)ﬂ
System.out.println("Minus test - passed");

valid = XmlSanitizer.isValid("Fritz-box");

/* %% Assert statements are the same *x */

bssertEquals(”Minus is valid", true, valid)ﬂ
System.out.println("Minus test - passed");

| might enforce it on some bigger projects

Empty Test

When a test method has

JUnit Wi” indicate 'tha't 'the /* *%x Test method without executable statements ** */
public void testCredGetFullSampleV1 () throws Throwable{
// ScrapedCredentials credentials = innerCredTest (FULL_SAMPLE_v1);
// assertBEquals ("p4ssw@rd", credentials.pass);
// assertEquals("user@example.com",6credentials.user);
}

present in the method body

Unanimous agreement ST TTTTTTTTTTTTmTTomoomoomooomooommooo oo ¢
among developers that such

Yes definitely should be removed
test methods

Exception Handling

Passing or failing of a test
method is explicitly

@Test
public void realCase() {
/* *% Fails the test when an exception occurs #**% =/
try {
a.compute();
} catch (CalculationException e) {
Assert.fail(e.getMessage());

o }
Developers ShOUId Utlllze Assert.assertEquals("233.2405", this.df4.format(a.getResults().get(0).

getUnknownOrientation()));

to automatically
pass/fail

lgnored Test

@Test

With re ardS -to o i s dest will pof be execufed due fo fhe Glcgpore annotation *% */
g [@Ignore("disabled for now as this test is too Flaky“)]
public void peerPriority() throws Exception {

Compilation time and an final List<InetSocketAddress> addresses = Lists.newArraylist(

new InetSocketAddress("localhaost", 2000),
= M M new InetSocketAddress("localhost", 2001),
Increase In COde CompleXIty new InetSocketAddress("localhost", 2002)

.)
and comprehension

peerGroup.addConnectedEventListener (connectedListener);

investigate problems or €
serve as a means for new
developers “to understand
behavior”

would not tolerate to have ignored tests in the code

Magic Number Test

Test method contains
unexplained and

Developers agree that the
use of constants over magic
numbers improve code
readability/understandability

Not a blanket rule - a
constant should only be
used so that its “name adds
useful information”

@Test
public void testGetlLocalTimeAsCalendar () {
Calendar localTime = calc.getLocalTimeAsCalendar (BigDecimal.valueOf(15.5D),
Calendar.getInstance());
/% %% Numeric literals are used within the assertion statement
assertEquals localTime.get(Calendar.HOUR_OF_DAY));
assertEquals (3@, localTime.get(Calendar.MINUTE));
}

If the numerical value has a deeper meaning (e.g.
flag, physical constant, enum value) then a
constant should be used.

Redundant Assertion

Assertion statements that

are either
@Test

Common reason for the public void testTrue() {

0 . . /* %% Assert statement will always return true #** x/
existence of this smell is assertEquals((true, true));
due to)
Developers confirmed that
such code “
" n”n and "

n

Might exist to support edge
cases

Redundant Print

Unit tests are executed as
part of an automated script

They can consume
computing resources or
increase execution time

Unanimous agreement that
print statements do not
belong in test suites

A common reason for the
existence of this smell is
due to developer debugging

@Test
public void testTransform1@mNEUAndBack () {
Leg northEastAndUp1@M = new Leg (1@, 45, 45);
Coord3D result = transformer.transform(Coord3D.ORIGIN, northEastAndUpl@M);
/* *% Print statement does not serve any purpose #**x */
[system.out.println("result = " + result):]
Leg reverse = new Leg(1@, 225, -45);
result = transformer.transform(result, reverse);
assertEquals (Coord3D.ORIGIN, result);

a waste of resources (cpu+disk space)

Sleepy Test

Explicitly causing a thread to
sleep
as the
processing time for a task
differs
and
configurations

Developers

(i.e.,
inconsistent results)
involved with causing a
thread to sleep

public void testEdictExternSearch() throws Exception {
assertEquals ("Searching",
/* %% Forcing the thread
(Thread. sleep(500) ;)

final Intent i2 = getStartedActivityIntent();

entry.english);

to sleep #*% */

the alternative requires more code

Unknown Test

The assertion statement
helps to indicate the

@Test
public void hitGetPOICategoriesApi() throws Exception {

Junit Wi” ShOW the test POICategories poiCategories = apiClient.getPOICategories(16);

for (POICategory category : poiCategories) {

method aS System.out.println(category.name() + ": " + category);
}

/* *% Test method without an assertion statement and non-descriptive name ** *

Majority of the developers
are in favor of ST TTTTTTTTTTTTTTTTTTTTTmooooomooee s

Ina It looks like just sloppy coding there.
test method Il look to fix that test

Missing assertions were due
to

, Java-based,
static analysis

Available as a
and requires a list of file
paths as input

Utilizes an
to parse and detect
test smells

Detects 19 test smells (12
proposed + 7 existing)

Average

A

Test File
Detection

Production
File
Detection

CSvV

Path to unit :@

test files

éo={ell <>

Project
source code

TSDETECT

Assertion
E T E T
Roulette ager Test mpty Test
Redundant
Lazy Test Print

Test Smell Detector Modules

JavaParser

ER

tsDetect
results

High-level architecture of TsDetect

3.
E xperiment Methodology

Data Collection Phase

Data Mining
cloned apps Tools

F-Droid

commits O

java files affected by commits

(@

A
JAVA

Mining
Output

Repositories

java files collected

Detection Phase

analyzed apps

detected test files

analyzed test methods

test files with 1 or more smells

Test File
Detection Tool

Syntactically correct
test files with 1 or
more test methods

Test Smell
Detection Tool

Detected test smells

(((

4,
Analysis & Discussion

n RQOT - Test Smell Occurrence

Test Smell Occurrence & Distribution
of the analyzed apps contained test smells
occurred the most (in over
50% of the analyzed apps and test files)
All smell types had a with

Assertion Roulette
of test smells between

Android and non-Android applications

RO1 - Test Smell Occurrence

Smell Type Distribution Smell Type Occurrence
18.00%
Smell Exhibition In
16.00% Smell Type Apps Files
o Assertion Roulette 52.28% 58.46%
14.00% Conditional Test Logic 37.32% 28.67%
Constructor Initialization 20.47% 11.70%
0,
12.00% Default Test 42.20% 0.32%
10.00% Duplicate Assert 31.81% 31.33%
Eager Test 42.99% 38.68%
8.00% Empty Test 16.38% 1.08%
Exception Handling 84.57% 49.18%
6.00% General Fixture 2551% 11.67%
Ignored Test 15.28% 3.00%
4.00% Lazy Test 39.06% 29.50%
Magic Number Test T7.01% 34.84%
2.00% Mystery Guest 3638% 11.65%
o . | = - - B Redundant Assertion 12.91% 3.87%
0.00% N N NS N . N . N . . Redundant Print 14.02% 0.92%
(%) ¢} . . ERE b
\é{,\ b\\(\o-’ &Q‘b &@o-’ &Q,@ (a@@ &Q,‘b OQ\ {S\\OQ‘ \\} \)@9 . \(06\ {»’\\\\ &O(\ &Q,% &Q,% &Q)‘b Q&\Q &@9 Resu-u.rce 0ptlrr-u.sm 15.75% 9.79%
00 Q}Q s & $(\ g ,1/\ é\'\/ \\'1, Qd‘) \36\ Q/O\ 52 @b Q* Q 6\, \§\. Sensitive Equality 21.10% 9.19%
‘ 08' Ny & & & P TR P & é@é @OQ R %\ef’ (O&Q R Sleepy Test 1260% 2.04%
& & S @ & Ff W @SS S Q Unknown Test 47.09% 34.38%
& & & Q ® & © P NIRS &
s R\ RO & 2P
SN &
@) P

Analysis & Discussion

RQOT - Test Smell Occurrence

Smell Type Co-Occurrence

Smell Type | ASR| CTL CNI DFT EMT EXFP GFX MGT RPFR RAS SEQ SLT EGT DAS LET UKT IGT ROP MNT
ASR 3% 90 0% 15 495 13% 15% 150 3 115 2% 54% 6% IR 23% 3 15% 52%
CTL 62% 18% 0% 2% 58% 145 25% 2% T% 9% 5% 44% 0% 33% 46% 6% 20% 40%
CNI 43% % 050 1% 2450 12% 2% 150 3 30 6% 2% M% 4% 5T% 2% 12% 1 8%
DFT (5 0% (1 15 (5 23% 150 0 (15 0% 05 (¥ (5 2% 0 05

EMT 69% 45% 0% 0% 2% 28% 2% (5% 0 450 15 5% 2% 18% 1% 2% 2% 47%
EXF 580 MR 0% 1% 15 15% 19% 150 3 650 4% 5% I 4050 3 18% 39%
GFX Llapd 5% 12% 0% A% 63% 105 15 1% 105 A% 49% 2% 4T% 43% % B A8%
MGT 7% ol 22% 1% 1% T9% 10% 1% 3% 5% 4% 2% 0% 9% 4% 2% 3% 42%
RPE 46% T% 0% 1% 46% 19%: 6% 1% 9% 1% 25% 2% 21% al% 2% 5% 3%
RAS 5% S0% 2% 0% 0% T0% 4% 10%: 0% 2% i% 6% 4% 40% 4% 8% 7% 4%
SEQ T 28% 450 0 05 34 13% 6% 150 150 2% 485 Mp 35 209 3 3% 52%
SLT 6% 67% % 0% (5% 100% 18% 20% (1 5% 9% 48% 3BR 3% 53% 5% 14% 26%
EGT B2% 33% 1% 0% 1% 45% 15% 13% 150 50 1% 3 6% 6% 19% 1% 11% 49%
DAaSs B6%n 36% 9 0% 15 5% 16% 15% 150 2% 13% 2% 5% 445 26% 3% 13% 6%
LET T2% 2% 0% 0% 1% 53% 195 11% 15 5 1% 2% T9% 1% 26% 1% 9 47%
UKT 39% 8% 19% 0% % @ 15% 165 2% 05 50 A% 21% 4% 22% T 14% 25%
IGT 0% B}% TR 0% 15 49% 105 6% 15 0% 8% A% 19% 2% 3% 75% 6% A5%
ROP T1% 6l 15% 0% 0% 925 1050 @ 050 I 3 I 445 4% 26% 48% 2% 45%
MNT @ 3% o% 1% 1% 55% 13% 14%: 1% 4% 14%: 2% 55% 54% AD% 25% i% 13%

Abbreviations:

ASR = Asertion Roukette | CTL = Conditional Test Logic | CNI = Constructor Initialzation | DFT = De fault Test | EMT = Empty Test | EXP = BException Handling |
GFX = General Fiture | MGT = Mystery Guest | RPR = Redundant Print | RAS = Redundant Assertion | SEQ = Sensitive Equality | SLT= Slkeepy Test | BGT = Eager Test |
DAS = Duplicate Assert | LZT= Lazy Test | UKT = Unknown Test | IGT = Ignored Test | ROP = Resource Optimism | MNT = Magic Nurmber Test |

‘ RO2 - Test Smell Trend

Test Smell Introduction
The first inclusion of a smelly file occurs
approximately of the way through the total
app commits
A test file is added with 3 smell types
is the frequently the first
smell type introduced
Smells exhibited by a file remains
throughout all updates to the file

O

Conclusion

Summary

of known
unit test smells

Open source

A study of 656 Android apps
showed a of
test smells in test suites

Smells are on
into the codebase and exist
during the lifetime of the app

Comprehensive project website:

Thanks!

https://testsmells.github.io

