
On the Distr ibution of Test
Smells in Open Source
Android Applicat ions: An
Exploratory Study
Anthony Peruma, Khalid Almalki, Christian D. Newman,

Mohamed Wiem Mkaouer, Ali Ouni, Fabio Palomba

29th Annual International Conference on Computer Science and Software Engineering

1.
Introduction

Software maintenance is not cheap!
3

I n t r o d u c t i o n

▸A high-quality system need not be necessarily
maintenance-friendly

▸Systems built using poor design/coding practices
can meet functional requirements

▸ In the long run, such events impact software
maintenance - and maintenance is not cheap!

▹ Maintenance consumes 50% to 80% of resources

Towards maintenance-friendly code
4

I n t r o d u c t i o n

▸Researchers and industry have defined and created
approaches and tools to detect code in need of
refactoring

▹ Design/code smells - Cohesion, Coupling, God Class, etc.

▹ Tools - FindBugs, PMD, Checkstyle, etc.

▸Smells make code harder to understand and make it more
prone to bugs and changes

▸Research and tools have been primarily on production code

Test Smells
5

I n t r o d u c t i o n

▸Test code, like production code, is subject to smells

▸Formally introduced in 2001 with 11 smell types

▸ Inclusion of additional smell types through the years, analysis
of their evolution and longevity, and elimination patterns

▸Tools to detect specific smell types

▸Studies on traditional Java applications

“

”

2.6 million apps
available on Google Play
as of Q4 2018

Objective
Insight into the unit testing practices of
Android app developers with the aim of
providing developers a mechanism to
improve unit testing code

7

I n t r o d u c t i o n

Contribution
8

I n t r o d u c t i o n & O b j e c t i v e s

Open-Source Test Smell Detection Tool

Understanding of Test Smells in Android apps

Expansion of Test Smell Types

Replication Package Availability

Research Questions
9

I n t r o d u c t i o n

RQ 02

What is the general trend of test smells in Android apps over time?
▹ When are test smells first introduced into the project?

▹ How do test smells exhibited by the apps evolve over time?

RQ 01

How likely are Android apps to contain unit test smells?
▹ Are apps, that contain a test suite, prone to test smells?

▹ What is the frequency and distribution of test smells in apps?

▹ How does the distribution of smell types in Android apps compare against traditional

Java applications?

2.
Test Smells

Proposed Test Smells
11

T e s t S m e l l s

▸ Conditional Test Logic

▸ Constructor Initialization

▸ Default Test

▸ Duplicate Assert

▸ Empty Test

▸ Exception Handling

▸ Ignored Test

▸ Magic Number Test

▸ Redundant Print

▸ Redundant Assertion

▸ Sleepy Test

▸ Unknown Test

Practicability
12

T e s t S m e l l s

120
smelly unit
test files

100
software
systems

120
software

developers

41.7%
response

rate

Are our proposed smells indicative of problems?

Conditional Test Logic
13

T e s t S m e l l s

▸ Conditions within the test
method will alter the
behavior of the test and its
expected output

▸ Developers agree on the
negative impact on code
comprehension

▸ However, outright removal
may not always be
applicable – decide on a
“case by case basis”

I actually have no idea why that for loop is there.
It doesn’t do anything but run the test 1000
times, and there’s no point in that. I’ll remove it.

Constructor Initialization
14

T e s t S m e l l s

▸ Initialization of fields should
be in the setUp() method
(i.e., test fixtures)

▸ Most developers are aware
of test fixtures

▸ Developers unanimously
agree on using test fixtures

▸ Reasons for not using test
fixtures include “laziness”
and being “sloppy” I have already made this change since you

pointed it out so the code is clearer now

Default Test
15

T e s t S m e l l s

▸ Default test class meant to
serve as an example

▸ Should either be removed

▸ A test-first approach will
force developers to remove
the file

▸ Unanimous agreement
among developers that the
file “serves no concrete
purpose” and that it may
lead to confusion

Removed useless example unit test

Duplicate Assert
16

T e s t S m e l l s

▸ The same condition is
tested multiple times within
the same test method

▸ The name of the test
method should be an
indication of the test

▸ Mixed responses - some
developers preferred to split
the assertion statement into
separate methods

I might enforce it on some bigger projects

Empty Test
17

T e s t S m e l l s

▸ When a test method has no
executable statements

▸ JUnit will indicate that the
test passes even if there are
no executable statements
present in the method body

▸ Unanimous agreement
among developers that such
test methods should be
removed from the test suite

Yes definitely should be removed

Exception Handling
18

T e s t S m e l l s

▸ Passing or failing of a test
method is explicitly
dependent on the production
method throwing an
exception

▸ Developers should utilize
JUnit’s exception handling
features to automatically
pass/fail

Ignored Test
19

T e s t S m e l l s

▸ Ignored test methods result
in overhead with regards to
compilation time and an
increase in code complexity
and comprehension

▸ Mixed responses -
investigate problems or
serve as a means for new
developers “to understand
behavior”

would not tolerate to have ignored tests in the code

Magic Number Test
20

T e s t S m e l l s

▸ Test method contains
unexplained and
undocumented numeric
literals

▸ Developers agree that the
use of constants over magic
numbers improve code
readability/understandability

▸ Not a blanket rule - a
constant should only be
used so that its “name adds
useful information”

If the numerical value has a deeper meaning (e.g.
flag, physical constant, enum value) then a
constant should be used.

Redundant Assertion
21

T e s t S m e l l s

▸ Assertion statements that
are either always true or
false

▸ Common reason for the
existence of this smell is
due to developer mistakes

▸ Developers confirmed that
such code “is not needed”,
“bad style” and “should
probably be removed”

▸ Might exist to support edge
cases

Redundant Print
22

T e s t S m e l l s

▸ Unit tests are executed as
part of an automated script

▸ They can consume
computing resources or
increase execution time

▸ Unanimous agreement that
print statements do not
belong in test suites

▸ A common reason for the
existence of this smell is
due to developer debugging

a waste of resources (cpu+disk space)

Sleepy Test
23

T e s t S m e l l s

▸ Explicitly causing a thread to
sleep can lead to
unexpected results as the
processing time for a task
differs when executed in
various environments and
configurations

▸ Developers confirmed that
there are risks (i.e.,
inconsistent results)
involved with causing a
thread to sleep

the alternative requires more code

Unknown Test
24

T e s t S m e l l s

▸ The assertion statement
helps to indicate the
purpose of the test

▸ JUnit will show the test
method as passing

▸ Majority of the developers
are in favor of having
assertion statements in a
test method

▸ Missing assertions were due
to mistakes

It looks like just sloppy coding there.
I'll look to fix that test

TSDetect

▸ Open-source, Java-based,
static analysis

▸ Available as a standalone
jar and requires a list of file
paths as input

▸ Utilizes an abstract syntax
tree to parse and detect
test smells

▸ Detects 19 test smells (12
proposed + 7 existing)

▸ Average F-Score of 96.5%

25

T e s t S m e l l s

High-level architecture of TSDetect

3.
Experiment Methodology

Data Collection Phase
27

E x p e r i m e n t M e t h o d o l o g y

F-Droid

Repositories

Data Mining
Tools

Mining
Output

2,011
cloned apps

1,037,236
commits

6,379,006
java files affected by commits

+3.5 GB
java files collected

Detection Phase
28

E x p e r i m e n t M e t h o d o l o g y

Test File
Detection Tool

Test Smell
Detection Tool

Syntactically correct
test files with 1 or

more test methods

Detected test smells

656
analyzed apps

206,598
detected test files

1,187,055
analyzed test methods

175,866
test files with 1 or more smells

4.
Analysis & Discussion

RQ1 – Test Smell Occurrence

Test Smell Occurrence & Distribution
▹ 97% of the analyzed apps contained test smells
▹ Assertion Roulette occurred the most (in over

50% of the analyzed apps and test files)
▹ All smell types had a high co-occurrence with

Assertion Roulette
▹ Similar distribution of test smells between

Android and non-Android applications

30

A n a l y s i s & D i s c u s s i o n

RQ1 – Test Smell Occurrence
31

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

S m e l l T y p e D i s t r i b u t i o n S m e l l T y p e O c c u r r e n c e

A n a l y s i s & D i s c u s s i o n

RQ1 – Test Smell Occurrence
32

A n a l y s i s & D i s c u s s i o n

S m e l l T y p e C o - O c c u r r e n c e

RQ2 – Test Smell Trend
33

A n a l y s i s & D i s c u s s i o n

Test Smell Introduction
▹ The first inclusion of a smelly file occurs

approximately 23% of the way through the total
app commits

▹ A test file is added with 3 smell types
▹ Assertion Roulette is the frequently the first

smell type introduced
▹ Smells exhibited by a file remains constant

throughout all updates to the file

5.
Conclusion

Summary
35

C o n c l u s i o n

▸ Extended the catalog of known
unit test smells

▸ Open source test smell
detection tool

▸ A study of 656 Android apps
showed a high prevalence of
test smells in test suites

▸ Smells are introduced early on
into the codebase and exist
during the lifetime of the app

▸ Comprehensive project website:
https://testsmells.github.io

Thanks !
https://testsmells.github.io

