. -
25t International Conference |,
] on Evaluation and Assessment

UNIVERSITY ©F NORTH TEXAS Le génie pour l'industrie in Softw a(‘éi\gr:gmee“ ng

Test Smell Detection Tools: A Systematic
Mapping Study

Wajdi Aljedaani Anthony Peruma Ahmed Aljohani

Mazen Alotaibi Mohamed Wiem Mkaouer Ali Ouni

Christian D. Newman Abdullatif Ghallab Stephanie Ludi

Context

® Software testing is an essential part of the software development life cycle.

® 1n 2001 [1], the catalog of test smells has been steadily growing throughout the years.

©) Q =

Reliable Defects/bugs Quality of the
software software

[1] Arie Van Deursen, Leon Moonen, Alex Van Den Bergh, and Gerard Kok. 2001. Refactoring test code. In Proceedings of the 2nd international
conference on extreme programming and flexible processes in software engineering (XP2001). 92-95.

Problem Statement

Contents lists available at SciancaDiract

SOFTWARE
The Journal of Systems and Software .

SEVII journal homepage: www.elsevier.com/locatelss

Smells in software test code: A survey of knowledge in industry and m

academia | G |

Vahid Garousi**, Bang Kiigiik"

Information Technology Group, Wageningen University, Netherlands

® Atitim Untversity, Ankare, Turkey

ARTICLE INFO ABSTRACT

Article history: As a type of anti-pattern, test smells are defined as poorly designed tests and their presence may nega-

Received 20 April 2017

tively affect the quality of test suites and production coce. Test smells are the subject of active discussions
among practitioners and researchers, and various guidelines to handle smells are constantly offered for
smell prevention, smell detection, and smell correction. Since there is a vast grey literature as well as

a large body of research studies in this domain, it is not practical for practitioners and researchers to
Keywords locate and synthesize such a large literature. Motivated by the above need and to find out what we, as
Software testing the community, know about smells in test code, we conducted a ‘multivocal' literature mapping (classifi-

Automated testing

patterns
Multivocal literature mapping

cation) on both the scientific literature and also practitioners® grey literature. By surveying all the sources
mation on test smells in both industry (120 sources) and academia (46 sources), 166 sources in total, our re-
view presents the largest catalogue of test smells, along with the summary of guidelinesjtechniques and
the tools to deal with those smells. This article ains to benefit the readers (both practitioners and re-
searchers) by serving as an *index” to the vast body of knowledge in this important area, and by helping

prom them develop high-quality test scripts, and minimize occurrences of test smells and their negative con-

Sysiematic mapping

sequences in large test automation projects.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Software testing can be conducted either manually or in an
automated manner. In manual testing, a human tester takes over
the role of an end-user interacting with and executing the soft-
ware under test (SUT)! to verify its behavior and to find any ob-
servable defects (Amannejad 2014). On the other hand, in
automated testing, test-code scripts are developed using certain
test tools (e.g., the JUnit framework) and are then executed with-
out human testers' intervention to test the behavior of an SUT. If
planned and implemented properly, automated testing could yield
various benefits over manual testing, such as repeatability and re-
duction of test effort (and thus costs). However, if not implemented
properly, automated testing will lead to extra costs and effort and
could even be less effective than manual testing in detecting faults
(Amannejad et al., 2014).

Automated software testing and development of test code
(scripts) are now mainstream in the software industry. For in
stance, in a recent book, Microsoft test engineers reported that

“there were more than a million [automated] test cases written for
Microsoft Office 2007 (Page et al, 2008). Automated test suites
with high internal quality facilitate maintenance activities, such as
code comprehension and regression testing. Development of test-
code scripts is however tedious, error prone and requires signif-
icant up-front investment. Furthermore, developing high-quality
test-code is not trivial and “writing effective unit tests is as much
about the test itself as it is about the code wnder test™ {Seguin, 2009).
“Tests can have bugs too!" (Multiple anonymous authors, 2016). As
a test practitioner pointed out in a blog (Seguin, 2009), “Complex
and messy unit tests don't add any value even if the code under test
is perfectly designed”.

Many guidelines have been proposed to help developers de
velop high-quality test code. We coined the term ‘Software Test-
Code Engineering (STCE)" in our recent works (Carousi et al., 2015;
Garousi and Felderer. 2016) which refers to the set of practices
and methods to systematically develop, verify and maintain high-
quality test code. Unfortunately, such practices and guidelines are
not always followed properly in practice, resulting in symptoms
called had smells (anti-natterns) in test code (or simnlv test smells).

///////////////////////
JRE: TEST SMELLS

L7z

What We Know
About Smells
in Software
Test Code

// Test smells are p

1d Blekinge

igned tests

and negatively affect the quality of test
suites and production code. We present the

largest catalog of test smells, along with a
summary of guidelines, techniques, a

tools used to deal with test

SOFTWARE TESTING IS con-

ducted by cither manual or auto-

find any observable defects. In auto-
mated testing, test-code scripts are

manual testing, such as repeatability
and reduction of test costs (and thus,
effort). However, if not properly im-
plemented, automated testing will
lead to additional costs and effort
and could even be less effective than
manual testing in detecting favles.*

The automated software test-
ing and development of test code
(scripts) are now mainstream in the
software industry. For instance, in
a recent book, Microsoft test engi-
neers reported that “there were more
than a million (automated) test cases
written for Microsoft Office 2007.7
Just like regular source code, au-
tomated test suites are also source
code and thus should be of highest
quality. No one wants to test his/
her software under development us-
ing a test suite that is of low quality
with defects itself. Many guidclines
bave been proposed to help devel-
opers create high-quality automated
test suites. We coined the term soft-
ware test-code engineering in our
recent works,! which refers to the
st of practices and methods used to
systematically develop, verify, and
maintain high-quality test code. Un-
fortunately, such practices and guide-
lines are notalways followed properly
in practice, resulting in symptoms
called bad smells {antipatterns} in
test code (or simply test smells). Test
smells are defined as poorly designed
tests and their presence may nega-
tively affect the maintainability of
test suites and production code, o
even their functionality.

In their collaborations with practi-
tioner testers and in the context of sev-

Study Goal

The goal is to provide
developers and researchers
with a one-stop source that can
offer comprehensive insight
into test smell detection tools.

°

Research Questions

What test smell detection tools are available to the community,
and what are the common smell types they support?

What are the main characteristics of test smell detection tools?

@
@

Study Design: Search & Selection

Keywords

Title:("tool*" OR "detect*" OR "test smell" OR "test smells")

AND Abstract:("test smell" OR "test smells" OR "test code"
OR "unit test smell")
ACM Digital Library Scopus
>) \S
Dlgltal lIbI'aFIBS |IEEE Xplore Springer Link

Science Direct

Web of Science

Study Design: Search & Selection

Inclusion Exclusion
. . Published in Computer Science Websites, leaflets, and grey literature
Inclusion & exclusion SR e 2001
tani ritten in Englis ublished in
search criteria o
Available in digital format Full-text not available online
Propose or use test smell detect tool Tools not associated with peer-

reviewed papers

Table 1: Our inclusion and exclusion search criteria.

Study Design: Search & Selection

Removal of duplicate &
retracted puhllcatlons Full-Text fmermg

‘oo w-
‘ Title & abstract \ ‘Snowball sampllng\
filtering

Figure 1: Overview of the volume of publications resulting from our
filtering process.

Zi Webof)
"7 science /

Fm—'?‘“

53_ Scopus)

Search Findings

What test smell detection tools are available to the community, ®
and what are the common smell types they support?
14
12
10
Part1:
Publication Years 8 9
& Venues 7 Tool Adoption
6 ® Tool Development
4
2 2 = = A P
= = 2 2 2 2 S 2
)

2006 2007 2008 2010 2012 2013 2014 2015 2016 2018 2019 2020
Figure 2: Yearly breakdown of tool publications.

TestLint

- Abnormal UTF-Use

- Anonymous Test

- Assertionless Test

- Comments Only Test

- Control Logic

- Early Returning Test

- Empty Shared-Fixture

- Empty MethodCategory

- Empty Test-MethodCategory

- Guarded Test

- Likely ineffective Object-Comparison
- Long Test

- Max Instance Variables

- Mixed Selectors

- Overcommented Test

- Overreferencing

- Proper Organization

- Returning Assertion

- Teardown Only Test

- Test-Class Name

- Test-MethodCategory Name

- Transcripting Test

- Unclassified MethodCategory

- Under-the-carpet Assertion

- Under-the-carpet failing Assertion
- Unused Shared-Fixture Variables
- Unusual Test Order

TRex

= TTCN-3 Smells

@0

Unnamed

- Assertion Roulette
- Eager Test

General Fixture

- Indirect Testing

- Lazy Test

- Mystery Guest

- Test Code
Duplication

- Sensitive Equality

Search Findings

. Number of new test smell types

. Number of existing test smell types

O Total number of detected test smell types

OraclePolish -
DTDetector |ElectricTest| PolDet

- Brittle Assertion

- Unused Inputs - Dependent Test - Dependent Test - Test Pollution

SOCRATES

- Assertion Roulette
- Eager Test

- General Fixture

- Lazy Test

- Mystery Guest

- Sensitive Equality

Part 2:
Test Smell
Detection Tools

@ O-®

tsDetect

- Assertion Roulette

- Conditional Test Logic

- Constructor Initialization
- Default Test

- Duplicate Assert

- Eager Test

- Empty Test

= Exception Handling

- General Fixture

- Ignored Test

- Lazy Test

- Magic Number Test

- Mystery Guest

- Redundant Assertion

- Redundant Print

- Resource Opti
- Sensitive Equality
- Sleepy Test

- Unknown Test

DrTest

TEDD

- Test Redundancy

- Rotten Green Test

A A

JNose Test ¢«

- Assertion Roulette

- Conditional Test Logic
- Constructor Initialization
- Dependent Test

- Default Test

- Duplicate Assert

- Eager Test

= Empty Test

- Exception Catching Throwing
- General Fixture

= Ignored Test

- Lazy Test

- Magic Number Test

- Mystery Guest

- Redundant Print

- Redundant Assertion
- Resource Optimism

= Sensitive Equality

- Sleepy Test

- Unknown Test

- Verbose Test

- Assertionless

- Assertion Roulette
- Duplicated Code

- Eager Test

- Empty Test

- Test Redundancy

TeCRcVis

es
- Indirect Test

- Mystery Guest

- Sensitive Equality
- Verbose Test

TestQ

0w

- Test Redundancy

TeReDetect

Test Method

- Dead Field

- General Fixture

- Lack of Cohesion of
Test Method

- Obscure In-Line Setup
- Test Maverick

-Vague Header Setup

- Eager Test

- General Fixture

- Lack of Cohesion
of Test Method

Dead Field
General Fixture
Lack of Cohesion of

Obscure In-Line Setup
Test Maverick
Vague Header Setup

TASTE

TestEvoHound

TestHound

- Test Redundancy

PRADET

2019

- Eager Test

- General Fixture

- Lack of Cohesion
of Test Method

- Assertion Roulette
- Duplicate Assert

RAIDE
DARTS

- Rotten Green Test

RTj

Figure 3: Timeline of the release of test smell detection tools by the research community.

Search Findings ©

Part 3: a
Test Smell
Detection Types

Tool\Smell Type AL AR CI CTL DA DC DepT DF DT EH EmT ET FIO GF IgT InT IT LCM LT MG MNT OISS RA RO RP RT SE ST T TR TRW UT VHS VT

[DARTS [46] TV | y = |
DrTest [31]

| DTDetector [75]
ElectricTest [24]

| JNose Test [72]
PrADET [34]

| RAIDE [60]
RTj [47]

I
I
RARARARAR
I
| SOCRATES [30] | v |
I
I
I
I
I

v v

< 2 2 2

=<

TasTE [52]

| TeCReVis [44]
TEDD [25]

| TeReDetect [45]
TestEvoHound [40]

| TestHound [39]
TestQ [27]

| TsDETECT [56]
Unnamed [22]

| Total

< <.

I
|
|
|
I
|
|

.‘/

v |

v N

| v

Vv N
vV |

vV v

2 2

v
v

2| 3| 2

v

2 6 2 1 2 2 2 1 2

I
|
|
|
I
|
|
|
|
|

I
|
|
|
v |
|
|
|
|
|

I
|
|
|
|
|
|
|
|
|

I
I
|
|
|
I I
I
|
|
|

<
2
<
<
o=l
<

V

v

v

e
(7)) 2|9} 1

\/

Table 2: Distribution of test smells detected by the test smell detection tools.

Search Findings

Part 4: @

.
Supported Programming
Languages
Programming Language _ _ , , Supported Test Smell Types - Literature Usage |
(01) Assertion Roulette (AR) (11) Eager Test (ET) (21) Magic Number Test (MNT) (31) Test Maverick (TM) [20, 49, 50, 73, 74]
(02) Assertionless (AL) (12) Empty Test (EmT) (22) Mystery Guest (MG) (32) Test Pollution (TP) [22, 39, 40, 44, 75]
(03) Brittle Assertion (BA) (13) Exception Handling (EH) (23) Obscure In-line Setup Smell (OISS) (33) Test Redundancy (TR) [23, 24, 41, 51, 65]
(04) Conditional Test Logic (CTL) (14) For Testers Only (FTO) (24) Redundant Assertion (RA) (34) Test Run War(TRW) [34, 55, 58, 63, 72]
Java (05) Constructor Initialization (CI) (15) General Fixture (GF) (25) Redundant Print (RP) (35) TTCN-3 Smells (TTCN) [25, 37, 38, 52, 61]
(06) Dead Field (DF) (16) Ignored Test (IgT) (26) Resource Optimism (RO) (36) Unknown Test (UT) [46, 56, 64, 70, 71]
(07) Default Test (DT) (17) Indented Test (InT) (27) Rotten Green Tests (RT) (37) Unused Input (UT) [26, 43, 53, 54, 62]
(08) Dependent Test (DepT) (18) Indirect Test (IT) (28) Sensitive Equality (SE) (38) Vague Header Setup(VHS) [33, 42, 47, 57, 66]
(09) Duplicate Assert (DA) (19) Lack of Cohesion of Test Method (LCM) (29) Sleepy Test (ST) (39) Verbose Test (VT) [45. 60]
(10) Duplicated Code (DC) (20) Lazy Test (LT) (30) (31) Test Code Duplication (TCD)
Scala (01) Assertion Roulette (AR) (03) Exception Handling (EH) (05) Mystery Guest (MG) [29, 30]
(02) Eager Test (ET) (04) General Fixture (GF) (06) Sensitive Equality (SE)
(01) Abnormal UTF-Use (AUU) (08) Empty Shared-Fixture (ESF) (15) Under-the-carpet failing Assertion (UCFA) (22) Test-Class Name (TCN)
(02) Anonymous Test (AT) (09) Empty Test-MethodCategory (ETMC) (16) Overcommented Test (OCT) (23) Test-MethodCategory Name (TMC)
(03) Assertionless Test (AL) (10) Guarded Test (GT) (17) Overreferencing (OF) (24) Transcripting Test (TT)
(04) Comments Only Test (COT) (11) Likely ineffective Object-Comparison (LIOC) (18) Proper Organization (PO) (25) Unclassied MethodCategory (UMC)
SmallTalk (05) Control Logic (ConL) (13) Long Test (LoT) (19) Returning Assertion (RA) (26) Under-the-carpet Assertion (UCA) [31,59]
(06) Early Returning Test (ERT) (12) Max Instance Variables (MIV) (20) Rotten Green Tests falls (RT) (27) Unused Shared-Fixture Variables (USFV)
(07) Empty MethodCategory (EMC) (13) Mixed Selectors (MS) (21) Teardown Only Test (TOT) (28) Unusual Test Order (UTO)
(01) Assertion Roulette (AR) (04) Eager Test (ET) (07) General Fixture (GF) (10) Mystery Guest (MG)
C++ (02) Assertionless Test (ALT) (05) Empty Test (EmT) (08) Indented Test (InT) (11) Sensitive Equality (SE) [27]
(03) Duplicated Code (DC) (06) For Testers Only (FTO) (09) Indirect Test (IT) (12) Verbose Test (VT)

Table 3: Distribution of Test Smells Per Programming Languages.

©

@ What are the main characteristics of test smell detection tools?

Common
Characteristics

Search Findings

Programming Language

Interface

Supported Test Framework

Correctness

Usages Guide Availability

/)

Detection Technique

Adoption in Research Studies

N)

/)

Tool Website

Search Findings @)

PN
Programming Language Supported Detection Usage Adoption in Tool
Tonl Implemented Analyzed Test Framework S armectness Technique Inletace Guide Studies Website
I DARTS ¥ [46] Java Java JUnit F-Measure: 62%-76% Information Retrieval Intelli] plugin Yes - 3]
v 5 Rule - _
DrTest [31] Smalltalk Pharo SUnit UNK Dynamic Tainting Pharo plugin Yes [4]
| DTDetector *° [75] Java Java JUnit UNK Dynamic Tainting Command-line Yes - [5]
ElectricTest [24] Java Java JUnit UNK Dynamic Tainting Command-line No - UNK
| JNose Test [70] Java Java JUnit UNK Rule Local web application Yes [71, 72] [6]
OraclePolish * [42] Java Java JUnit UNK Dynamic Tainting Command-line Yes - (7]
| PoLDET [41] Java Java JUnit UNK Dynamic Tainting UNK No - UNK
PrRADET [34] Java Java JUnit UNK Dynamic Tainting Command-line Yes - (8]
| RAIDE * [60] Java Java JUnit UNK Rule Eclipse plugin Yes - [10]
Rule
. : - 1; _
RTj ~ [47] Java Java JUnit UNK Lo Command-line Yes [11]
. Precision: 98.94% : ;
SoCRATES [30] Scala Scala ScalaTest Recall: 89.59% Rule Intelli] plugin Yes [29] [12]
. Precision: 57%-75% . .
TASTE [52] UNK Java JUnit Recall: 60%-80% Information Retrieval UNK No [54] UNK
TeCReVis * [44] Java Java JUnit UNK Merics Eclipse plugin ¥ Yes - [14]
Dynamic Tainting
o Precision: 80% - By .
TEDD [25] Java Java JUnit Recall: 94% Information Retrieval Command-line Yes [26] [13]
TeReDetect * [45] Java Java JUnit UNK MEkric Eclipse plugin ¥ Yes - [14]
Dynamic Tainting
TestEvoHound [40] Java Java JUnit, TestNG UNK Metrics UNK No - UNK
| TestHound ¥* [39] Java Java JUnit, TestNG UNK Metrics Desktop application No - [15]
TestLint * [59] Smalltalk Smalltalk ~ Sunit UNK S UNK Yes - [16]
Dynamic Tainting
= CppUnit, JUnit, . —
TestQ * [27] Python C++, Java Otest UNK Metrics Desktop application Yes - [17]
TRex ¥§* [20] Java Java TTCN-3 UNK Rule Eclipse plugin Yes [49, 50, 73, 74] [18]
g Precision: 85%-100% 3 (43, 55, 61, 64]
TSDETECT [56] Java Java JUnit Reeall-90%100% Rule Command-line Yes (33, 53, 57, 62 [19]
Unnamed [22] UNK Java JUnit Rrecoion #6% Rule Command-line No [23,51, 65, 66] UNK

Recall: 100%

[37. 38, 53, 58, 63]

Table 4: Characteristics of test smell detection tools.

©

Standardization of smell Do not reinvent

names and definitions

Improve support for non-Java
programming languages and
testing frameworks

the wheel

Researh Takeaways

Expand from just detecting

refactoring

Improve transparency on
the quality of tools

test smells to interactive ¢

Replication Package

https://zenodo.org/record/4726288#.YMhyRKhKiUk

Upload Communities

Apil 29,2021 [oaasr | Open oces

Test Smell Detection Tools: A Systematic
Mapping Study

Aljedaani, Wajdi; @® Peruma, Anthony; Aljohani, Ahmed; Alotaibi, Mazen; § Mkaouer, Mohamed Wiem; Ouni, Ali; @ Newman,
Christian D.; Ghallab, Abdullatif; Ludi, Stephanie

This is the dataset that accompanies the study: "Test Smell Detection Tools: A Systematic Mapping Study .’ This study
has been accepted for publication at 2021 The International Conference on Evaluation and Assessment in Software
Engineering (EASE 21).

For More Information

https://testsmells.org/

@\ What test smell detection tools are available to the community,
227/ and what are the common smell types they support?

o,
A
I{@;\ What are the main characteristics of test smell detection tools?

/ST Search Findings

{ @‘- ‘What test smell detection tools are available to the community,
/J and what are the common smell types they support?

Part 1: s
Publication Years B
& Venues = Tool Adopion
6 = Tool Development
4
I ! I ! . J
., nilall

2007 2008 2010 2012 2013 2014 2015 2018 2018 2019 2020
Figure 2: Yearly breakdown of tool publications.

[

Study Design: Search &

Improve support for non-Java
programming languages and
testing frameworks

o

Selection haN

Figure 1: Overview of the volume of publications resulting from our
filtering pracess.

Study Takeaways

Expand from just detecting

Standardization of smell Donot reinvent testsmellsto interzctive
L refactoring
names and definitions the wheel

1 1
;/ N ,*"

,{}\‘

Improve transparency on
the quality of toals

@

Thanks For
Watching!

© @

